
D
RA
FT

Seren - A Framework for Decentralized Web Infrastructure

Abstract

We propose a decentralized web infrastructure protocol that integrates decentralized storage,
computation, and financial infrastructure into a cohesive framework for building truly server-
less web applications. The protocol addresses fundamental limitations in existing blockchain
networks through three interconnected components: a decentralized storage layer, a verifiable
ZK-computation layer, and a Layer 1 blockchain. We propose modifications to established
blockchain protocols that enable unified cross-component tokenomics and a gasless transaction
mechanism.

In addition, we propose a novel walletless interaction model, allowing users to securely in-
teract with decentralized applications (dApps) without downloading any software. This model
achieves a level of private key protection comparable to modern browser extension wallets,
leveraging secure in-browser environments.

Version: 0.1 (draft)

1

D
RA
FT

Contents

1 Introduction 4

2 Toward Decentralized Web 4

3 Existing solutions and current industry state 5
3.1 Ethereum . 5
3.2 Tron . 5
3.3 Solana . 5
3.4 Ton . 5
3.5 The Opportunity for a Unified Protocol . 5

4 The protocol layout 6

5 Enhanced User Experience 6

6 Decentralized storage 7
6.1 General-purpose File Storage Layer . 7
6.2 Redefining the Arweave Transaction Format . 8
6.3 Storage Backend for Executable Programs . 8

6.3.1 Task Feed Mechanism and Proof-Driven Settlement 8
6.4 Decentralized UI Delivery . 9

6.4.1 Walletless UI . 9
6.5 Decentralized Database and Data manifestation . 10
6.6 Messaging Medium . 11
6.7 Foundational Layer for Decentralized DNS . 11

7 Decentralized Calculations 11
7.1 Computations . 12

7.1.1 Cryptographic Proof Generation . 12
7.2 Service Payments . 13
7.3 Delayed execution . 13
7.4 Recurrent calculations . 14

8 Decentralized Financial layer 14
8.1 Network sharding . 14

8.1.1 dApps sharding economy . 14
8.2 Gasless transactions . 15
8.3 RISC-V virtual machine . 15
8.4 Smart contract language . 16

8.4.1 AssemblyScript . 16

9 Areas of Application 16
9.1 Web3 payments in web2 websites . 16
9.2 Decentralized Gaming . 16
9.3 Decentralized Social Networks . 17
9.4 Pay-to-Stream Video Content and Micropayments 17
9.5 Decentralized Messaging . 17

2

D
RA
FT

9.6 Decentralized Advertising Networks . 18
9.7 Digital Art and Intellectual Property Ownership . 18

10 Final words 18

3

D
RA
FT

1 Introduction

The concept of a decentralized web has been
a persistent vision in technological discourse,
yet its precise definition remained elusive for
years. Many mistakenly assumed that the in-
ternet’s distributed network of servers already
constituted decentralization. This confusion
stemmed from conflating geographical distribu-
tion with actual decentralization of control and
ownership.

A clearer definition emerged with the rise
of serverless architecture - applications and ser-
vices that operate without reliance on dedicated
servers, whether physical or cloud-based. This
model challenges the traditional client-server
architecture that has dominated the internet for
decades, as outlined by Nakamoto [1].

From the user’s perspective, modern web
applications are composed of four core compo-
nents: HTML for structure, CSS for styling,
JavaScript for interactivity, and backend stor-
age for state and session data. This frontend-
backend model has become the standard solu-
tion for digital interaction.

The promise of decentralization lies in
reimagining these components in a serverless
context. Applications can retain their familiar
frontend while replacing centralized backends
with decentralized, immutable, and permission-
less infrastructure. This shift goes beyond tech-
nical innovation - it reshapes the principles of
data control, moving it from platform providers
to end users.

Technologies such as blockchain networks,
decentralized file systems, and peer-to-peer pro-
tocols have laid the foundation for this vi-
sion, but the ecosystem remains incomplete.
With continued development and refinement,
these technologies are progressively enabling
the deployment of applications that are au-
tonomous, censorship-resistant, and resilient to
single points of failure.

2 Toward Decentralized Web

The first real proof of decentralized applica-
tions came with Decentralized Finance (DeFi),
demonstrating that financial services can oper-
ate without central intermediaries. However,
DeFi also exposed key limitations. For example,
DeFi primarily focuses on financial operations,
while current decentralized infrastructure isn’t
suitable as a foundation for onboarding more
complex applications and supporting their eco-
nomics.

Later advances introduced Zero-Knowledge
(ZK) proofs, enabling verifiable computation
while preserving the security guarantees of de-
centralized systems. This helped bridge critical
gaps by supporting more complex and variable
operations.

As verifiable computation matured, user ex-
pectations also evolved—demanding not just
security, but also censorship resistance and
transparency in how web applications function.
While DeFi didn’t address these needs directly,
the underlying technologies inherently support
them, unlocking new possibilities for decentral-
ized communication, media, and more.

The modern decentralized web is composed
of three components: decentralized storage for
data persistence, verifiable computation, and
decentralized financial layer for value exchange.
However, current implementations lack smooth
interconnection, relying on overly complex tech-
nical solutions and fragmented tokenomics. As
a result, these attempts remain experimental or
niche products rather than realizing their full
potential.

Our infrastructure unifies all three compo-
nents into a single architecture - expanding the
power of decentralization far beyond finance.
The protocol represents a significant advance-
ment toward the original vision of a decentral-
ized web. It combines battle-tested blockchain
technologies with novel approaches to computa-
tion, storage, and user experience - laying the
groundwork for a scalable, censorship-resistant,
and user-controlled digital future.

4

D
RA
FT

3 Existing solutions and cur-
rent industry state

The current blockchain landscape features four
major networks that have achieved signifi-
cant user adoption and technical maturity:
Ethereum, TRON, Solana, and TON. While
other blockchain networks exist with various
technical innovations, they largely resemble the
mentioned blockchains, and their detailed con-
sideration would questionably add unique ad-
vantages warranting inclusion for large-scale de-
centralized applications.

3.1 Ethereum

Ethereum established itself as the pioneer of
smart contract platforms, introducing pro-
grammable blockchain functionality [2, 3]. Its
robust security model and decentralized nature
come at the cost of mid to high transaction fees
and limited throughput. While Layer 2 solu-
tions attempt to address scalability, they intro-
duce additional complexity and potential secu-
rity considerations.

3.2 Tron

TRON network introduced the innovative con-
cept of system programs - built-in system pro-
grams with privileged access to transaction
state, enabling deeper blockchain interaction
than traditional smart contracts. It offers
higher transaction throughput and low to mid
fees through its proof-of-stake consensus. This
consensus mechanisms have demonstrated its
capability to dramatically improve transaction
throughput compared to proof-of-work systems.

3.3 Solana

Solana prioritizes high performance through
a novel proof-of-history consensus mechanism,
enabling high throughput and low transaction
costs [4]. Its innovative multi-instruction trans-
action schema, somewhat similar to Bitcoin’s
multi-input model, allows a single transaction
to perform multiple operations.

3.4 Ton

TON introduces a multi-blockchain architec-
ture with dynamic sharding [5]. Each applica-
tion or contract can live on its own workchain
or shardchain, which allows the network to
scale horizontally as demand grows. Its asyn-
chronous messaging between shards enables
parallel execution, and built-in mechanisms for
inter-shard communication make it highly suit-
able for complex, modular applications.

3.5 The Opportunity for a Unified
Protocol

While established protocols like Ethereum,
TRON, Solana, and TON have laid the founda-
tion for the decentralized web, particularly in
financial applications, they have only begun to
explore the broader landscape of online inter-
actions. Their innovations in decentralized fi-
nance (DeFi) proved that trustless systems can
replace traditional intermediaries in specific ar-
eas. However, their real-world impact remains
limited to a small fraction of the global digital
economy.

Today, decentralized technologies have in-
fluenced only a small percentage of online value
exchange, mostly within crypto-native ecosys-
tems. In contrast, the vast majority of dig-
ital transactions, from subscriptions and con-
tent to cloud storage and advertising, remain
rooted in centralized Web2 systems. This
multi-trillion-dollar economy remains largely
untouched by decentralization, in part because
existing blockchain infrastructure lacks the us-
ability, scalability, and flexibility needed to in-
tegrate with mainstream applications.

The Web2 economy represents a massive,
largely untapped opportunity for decentralized
technologies. According to estimates, the global
digital economy is projected to reach $16.5
trillion by 2028 [6]. Despite the success of
blockchain in DeFi, the lack of integrated decen-
tralized storage and computation means these
systems have only scratched the surface of
what’s possible.

This gap presents a major opportunity for

5

D
RA
FT

new projects to step in. By addressing Web2
concerns, such as offering cheaper decentralized
storage, verifiable off-chain computations, and a
seamless user experience, next-generation pro-
tocols can help Web2 platforms benefit from
tamper-resistant infrastructure while unlock-
ing substantial liquidity into the Web3 space.
These advancements would not only close cur-
rent gaps but also accelerate the decentralized
web’s adoption across the broader digital econ-
omy.

4 The protocol layout

The proposed decentralized web infrastructure
rests composed of 3 fundamental components,
each serving a distinct purpose while maintain-
ing interoperability:

The decentralized data storage component
refers to each uploaded file by its hash sum,
similar to existing decentralized storage solu-
tions. For human-readable names, an internal
Resource Name Service (RNS) can optionally
map an assigned name to the hash of the lat-
est version of a file, automatically or manually
updating pointers upon content modification.
Files can be stored as mutable, with a dedicated
metadata file defining the internal file organi-
zation, content update policies, associated fees,
tips, and taxes. Different entities can update in-
ternal regions of a file under predefined terms,
with RNS dynamically adjusting to point to the
latest version. Instead of implementing an iso-
lated tokenomics model, the storage tokenomy
can be unified with other components through
a message exchange mechanism. This mecha-
nism provides secure message exchange between
components, enabling seamless information and
value coordination across the system without
isolating components state or tokenomics.

The computation component is based on
a verifiable computation environment. It is
closely integrated with decentralized data stor-
age, where users upload calculation requests
consisting of program code, input data, and an
attached tip to incentivize resource providers.
Providers execute the requested computations

and then return the result along with proof of
execution which is stored next to the original re-
quest. This model offloads complex calculations
from the Layer 1 network, unrelated to financial
operations, significantly reducing computation
costs associated with on-chain calculations.

The financial component implements the
Layer 1 blockchain using established and proven
technologies. While it incorporates existing
battle tested elements such as consensus mech-
anisms and smart contracts, its primary in-
novation lies in its deep integration with the
storage and computation protocols, along with
the introduction of new transaction schema, a
new gas operation paradigm, and new smart
contract operations, enabling gas top up while
operation execution. A multi-operation trans-
action can execute multiple tasks sequentially,
where the transaction itself may be initiated
with a zero balance and a first operation swap-
ping a traded token into gas, which covers sub-
sequent transaction execution costs. The con-
cept of a post-operation gas check is critical to
enabling this flow. This approach eliminates
the need for users to hold native coins to pay
for gas prior to the transaction while preserving
a simple and clear transaction structure.

Each component provides standardized in-
terfaces for cross-component interactions and
features global shared tokenomy.

5 Enhanced User Experience

The adoption of new technologies is heavily
driven by the ease of user onboarding and in-
teraction with blockchain ecosystems. Solana
demonstrated strong adoption within the meme
ecosystem largely due to technical optimiza-
tions that reduced onboarding times from hours
to minutes.

One way to improve user’s experience is to
let users interact with dApps without installing
additional wallet software - which we refer to
as Walletless experience. By supporting wal-
letless user interactions, the protocol removes a
major onboarding barrier. Users can interact
with decentralized applications securely, with-

6

D
RA
FT

out needing to install separate wallet software.
To further improve user experience,

blockchain will feature a simple mechanism to
cover transaction fees in any token along with
deep integration across computation and stor-
age layers. This enables a new generation of
serverless, general-purpose applications.

Combination of these two mechanisms, inte-
grated and aligned together - walletless UI and
gasless transactions - eliminate two major bar-
riers to mass adoption:

• No need to download and initiate 3rd
party wallet software.

• No need to hold native blockchain tokens
upfront the transaction.

This simplifies the user journey, bringing
dApps much closer to mainstream usability.

6 Decentralized storage

Our decentralised storage protocol is based on
Arwave [7], with some modifications. The stor-
age features following critical properties: de-
terministic resource addressing, resource name
service, resource structure manifestation and
tip allocation, along with traditional proper-
ties like permanent availability and tamper re-
sistance. Files stored in this system receive
unique identifiers that simultaneously serve as
both blob pointer and checksum, ensuring con-
tent integrity. The high replication factor of
stored data guarantees permanent availability
across the network.

This component serves multiple roles: a
general-purpose file storage layer, a memory
backend for executable programs, a decentral-
ized UI delivery, a decentralized database and
data manifestation, a messaging medium, and
a foundational layer for decentralized DNS.

6.1 General-purpose File Storage
Layer

At the core of our decentralized infrastructure
lies a robust, general-purpose file storage layer
inspired by the Arweave protocol. This layer is

designed to provide long-term, immutable data
storage through content-addressable architec-
ture. Every file added to the network is assigned
a unique hash, which functions both as an iden-
tifier and a cryptographic checksum. This guar-
antees the integrity of stored data and enables
deterministic retrieval - a file can always be
fetched using its original hash.

In line with Arweave’s philosophy, our sys-
tem ensures permanent availability through a
high-redundancy replication model, where data
is distributed across many nodes. This redun-
dancy not only safeguards against data loss
but also reinforces censorship resistance and re-
silience. A crucial component of Arweave’s ar-
chitecture is its unique consensus mechanism
based on the Blockweave, a blockchain-like
structure where each new block is cryptograph-
ically linked not only to the immediately pre-
ceding block, but also to a randomly selected
previous block from the chain’s history. This
design, known as Proof of Access (PoA), re-
quires miners to demonstrate knowledge of ran-
domly selected historical data in order to pro-
duce a valid block. As a result, miners are in-
centivized to store as much of the network’s his-
torical data as possible, reinforcing decentral-
ization and durability. This contrasts with tra-
ditional blockchains, where miners only need to
maintain the latest state. By requiring deep
access to the archive, Arweave ensures long-
term availability and embeds data permanence
directly into the mining process.

Arweave Blockweave Structure
Each block references both the previous block and a random historical block

Block 144 Block 145 Block 146 Block 147 Block 148 Block 149

Proof of Access (PoA) Mechanism

This layer is not only foundational for static
file storage but also supports a variety of appli-
cations, including executable code distribution,
decentralized frontend delivery, and composable
data infrastructure for higher-order decentral-
ized services.

7

D
RA
FT

6.2 Redefining the Arweave Transac-
tion Format

To better align the protocol with generalized
computation, modular storage, and service-
level coordination, we introduce a fundamen-
tal redefinition of the standard Arweave trans-
action structure. This evolution departs from
the original currency-transfer model in favor of
a more expressive, action-oriented architecture,
optimized for programmability and decentral-
ized infrastructure orchestration.

In the revised format, the target and quan-
tity fields will be removed entirely. These fields,
originally designed to facilitate token transfers
between wallets, are no longer relevant in the
context of execution-driven storage and pro-
grammatic task resolution. Instead, the fo-
cus shifts from monetary movement to declara-
tive intent and atomic interaction with the net-
work’s decentralized components.

The central element of the new transaction
model is the action list - a sequential collec-
tion of discrete operations encoded within each
transaction. Each action is self-contained and
may perform one or more of the following: com-
mit data to permanent storage, allocate space
for deferred writes, assign metadata to the allo-
cated space, which can define write validation
rule (e.g., ZK-proof requirement), and option-
ally a tip to incentivize external actors to fulfill
the allocated space. This model introduces a
clear boundary between what the transaction
author declares and what the network fulfills,
enabling asynchronous and verifiable coordina-
tion.

To ensure network stability and enable ef-
ficient validation, each individual action is re-
stricted to a maximum payload of 256KB.
Additionally, a transaction may include up
to 40 such actions (chunks), resulting in a
per-transaction ceiling of 10MB. This granu-
lar structure aligns with the original Arweave
transaction’s data limitations, preserving com-
patibility with existing node architectures while
enabling transactions to express richer, multi-
step behaviors in a single, verifiable unit.

6.3 Storage Backend for Executable
Programs

The decentralized computation model resem-
bles a traditional CPU, where program code
and input data share a common memory space.
Resource providers monitor a live feed of avail-
able computation tasks [8], each containing a
reference to the program, input, and an execu-
tion tip. Upon claiming a task, a provider runs
the program, computes the result, and gener-
ates a cryptographic proof of correct execution.
The result and proof are then stored, and a val-
idation mechanism ensures integrity before dis-
tributing the tip.

The execution environment is based on a
RISC-V architecture, using Risc Zero’s veri-
fiable virtual machine as a foundation. Un-
like traditional blockchain environments that
prioritize deterministic, state-bound execution,
this model is designed for flexible and general-
purpose computation, verified off-chain. The
virtual machine will be extended for perfor-
mance while maintaining verifiability.

For further details check Section 7.1.

6.3.1 Task Feed Mechanism and Proof-
Driven Settlement

The decentralized computation layer functions
through a dynamic task feed system, acting as
the core coordination point between resource
providers and requesters. This feed broadcasts
computation requests across the network, each
specifying a program hash (pointing to the ex-
ecutable stored on the decentralized storage
layer), input parameters, and an execution tip
denominated in the network’s native coin. Re-
source providers subscribe to this feed using a
pub-sub protocol, filtering tasks based on com-
putational demands, hardware capabilities, and
economic incentives.

In the revised architecture, each computa-
tion request is written as a structured metadata
object into the storage layer before it enters the
task feed. This metadata includes references
to the program code, the computation input,
pre-allocated storage spaces for both the result

8

D
RA
FT

and the proof, a description of the proof vali-
dation mechanism (e.g., a zk-SNARK verifier),
and the tipping information that defines the re-
ward conditions. Once published, nodes moni-
tor the storage layer for new requests and begin
exhibiting them as part of a continuously up-
dated stream. External listeners, such as com-
putation providers, can subscribe to this stream
to receive new requests as they become avail-
able.

Upon claiming a task, the provider launches
the referenced program within a sandboxed
RISC-V virtual machine, processes the input,
and produces two essential outputs: the com-
putation result and a zero-knowledge proof (zk-
SNARK) certifying correct execution. This
proof guarantees that the program was ex-
ecuted faithfully according to its immutable
bytecode.

Both the result and the proof are submit-
ted to the decentralized storage layer as an-
other transaction, containing a single action
that attempts to fulfill the allocated space. If
the submitter successfully verifies the crypto-
graphic validity against the program’s original
hash stored on-chain and confirms that the in-
put and output data align with the task specifi-
cations, the submission is accepted and a mes-
sage with tip releasing is submitted to the fi-
nancial layer.

6.4 Decentralized UI Delivery

Modern web technologies are evolving, and de-
centralized UI mechanisms are being actively
researched. As mentioned earlier, from the
browser’s perspective, a web application con-
sists of an HTML document served on re-
quest, along with additional CSS and JS files
loaded through subsequent requests. Tradi-
tional domain-based systems introduce central-
ization risks, where domain ownership can be-
come a single point of failure or a target for cen-
sorship. With deterministic addressing, content
is directly verifiable, making any tampering by
storage providers or intermediaries detectable
at the time of delivery.

Reliable delivery of content to browsers has

been researched, discussed, and addressed for
a long time. Partially, this situation has been
improved, but there remains space for further
enhancements, which are actively pursued by
multiple research groups, especially to counter
the increasing threat and sophistication of con-
tent tampering attacks.

One partial solution is the mechanism called
Subresource Integrity (SRI), which adds a
checksum to secondary files so that the browser
can verify their contents against this checksum
when loaded. This mechanism ensures tamper-
resistant delivery of side content within a web-
page. However, SRI only protects secondary
resources and cannot guarantee the integrity of
the HTML document itself. A similar mech-
anism for root HTML verification is currently
being researched and actively discussed.

One promising approach involves DANE
with DNSSEC, where cryptographic records in
DNS, secured by DNSSEC, can authenticate
services or content. Building on that, a DNS-
based “Content Verification” mechanism is un-
der active discussion. This would allow do-
mains to publish content hashes via DNS TXT
records, enabling browsers to verify content in-
tegrity at load time, which is discussed in de-
tail in Section 6.7. Such a system could solve
key trust issues without relying on third par-
ties. It is also possible that privacy-focused
browsers like Brave could adopt these features
before mainstream browsers such as Chrome.

There are certain advantages to combining
decentralized storage with decentralized DNS
services, which make TXT records more suit-
able for content verification. However, ad-
vanced security considerations must be pre-
served to ensure the necessary content safety
measures.

6.4.1 Walletless UI

Web standards are evolving, and a new HTML
element, FencedFrame, is now supported in
Chrome. It is designed to provide secure iso-
lation for web components within a parent web
page. Think of it as a sandbox environment,
similar to those used by browser extensions like

9

D
RA
FT

crypto wallets, which could serve as inspiration
for future implementations.

Traditionally, browser-extension-based wal-
lets operate in isolated namespaces (e.g.,
chrome-extension://<ID>) and communi-
cate with the main page via the postMessage
mechanism. This architecture ensures that pri-
vate keys remain secure within the extension’s
context.

Inspired by this model, it is conceivable that
a wallet interface could securely run within a
dApp’s web page using the FencedFrame con-
text, offering similar private key isolation. How-
ever, this concept requires meticulous config-
uration and comprehensive security measures
to ensure adequate protection. For exam-
ple, browser-level safeguards, including con-
tent namespacing and strict origin policies, help
prevent unauthorized access from insecure ele-
ments like iframes. These protections lay the
foundation for a walletless model.

A critical component of this setup is es-
tablishing a secure communication channel be-
tween the web page and the wallet. Since
FencedFrame is intentionally designed not to
support postMessage, a potential workaround
could involve a decentralized messaging mech-
anism. In this model, the browser and wal-
let would establish a communication session
via a decentralized storage infrastructure and
exchange messages. This approach would be
somewhat akin to WalletConnect, but with a
significantly higher degree of decentralization.

Browsers are actively moving in this di-
rection. Emerging features like WebAssem-
bly sandboxing, WebContainers, and the future
evolution of isolated iframes all point toward a
future where embedded wallet interfaces could
be implemented in new ways, each offering se-
curity guarantees comparable to those of tra-
ditional blockchain extensions. FencedFrame
represents the first and most immediate step
in this journey. In the coming years, it’s likely
that we’ll see multiple implementations of se-
cure, walletless experiences tailored to various
use cases, all providing the required levels of
security.

Secure updates The problem of secure ver-
sion upgrade can be addressed via RNS pointing
to the latest version of the UI. Code integrity
verification can be performed by the browser
upon content arrival, with additional protec-
tions such as watermarks embedded inside the
container to prevent spoofing.

Seed phrase backup and recovery The is-
sue of private key or seed phrase backup can be
solved through a cross-browser migration mech-
anism, where an encrypted seed backup is trans-
ferred between user devices over the protocol’s
infrastructure. This acts as an additional layer
of security for protecting users’ keys during de-
vice changes, while also addressing the existing
complexities of seed phrase storage and man-
agement.

Prospectives By combining decentralized UI
delivery with in-browser wallet execution, users
gain a seamless experience: no downloads, no
extensions, and no native tokens required up-
front. This significantly reduces onboarding
friction and supports mass adoption without
compromising security or decentralization.

6.5 Decentralized Database and Data
manifestation

The decentralized equivalence of databases
builds upon Arweave’s immutable storage
model by introducing a dynamic, chunk-based
architecture in which files are decomposed into
granular units. Each chunk is assigned a
content-derived identifier and indexed within an
associated Merkle-Patricia trie. This structure
enables efficient tracking of revisions and sup-
ports partial updates.

At the core of the system is the manifest file:
a structured metadata schema that coordinates
data structure, access permissions, validation
logic, and economic incentives. The manifest
defines policies for scalable storage (e.g., expan-
sion or compaction), and embeds cryptographic
references to external resources such as valida-
tion programs, related datasets, or executable
modules.

10

D
RA
FT

Data integrity is maintained through a vali-
dation layer. When a chunk is updated, the net-
work validator executes the specified validation
logic, according to manifest file’s specifics. The
verifier confirms that the new chunk complies
with the manifest’s rules, such as maintaining
schema integrity, enforcing ownership permis-
sions, or satisfying economic conditions. Ap-
proved changes are recorded immutably. Chunk
modifications incur costs based on their size and
validation complexity. These payments are as-
signed to the validator.

6.6 Messaging Medium

To enable secure, transient messaging between
off-chain parties, a lightweight communication
protocol is built on top of the decentralized stor-
age layer. This system operates in a decen-
tralized fashion similar to WalletConnect, al-
lowing participants to establish encrypted com-
munication channels without relying on central-
ized servers or persistent on-chain transactions.
Messages are treated as ephemeral data chunks
with defined time-to-live (TTL) values and are
temporarily stored in a message pool. Unlike
permanent storage operations, these messages
are not mined into the canonical chain and are
excluded from long-term replication, reducing
storage overhead and enabling low-latency de-
livery.

Secure channel establishment begins with a
cryptographic handshake for mutual authenti-
cation. Party A initiates communication by
generating an ephemeral key pair and broad-
casting an encrypted message. This message
includes Party B’s public key, a TTL (e.g., 5
minutes), and a session key derived from Party
A’s ephemeral private key and Party B’s pub-
lic key. The message is distributed across the
network and temporarily held in the recipient’s
inbound message pool.

Party B monitors their pool, locates the
message addressed to them, and decrypts the
session key using their private key. All sub-
sequent messages between the parties are then
encrypted using AES-GCM with the shared ses-
sion key, ensuring confidentiality and integrity

throughout the session.

6.7 Foundational Layer for Decen-
tralized DNS

TODO

7 Decentralized Calculations

The decentralized computation model mirrors
the architecture of a traditional CPU, where
both program code and input data coexist in a
shared memory space, which is a decentralized
storage in our case. Within this system, calcu-
lation resource providers continuously monitor
a live feed that broadcasts newly available com-
putation tasks. Each task includes a reference
to the program code, input data, and an asso-
ciated tip to incentivize execution.

Once a provider selects a task, it executes
the designated program, computes the result,
and generates a cryptographic proof attesting
to the correctness of the execution. Both the
result and the proof are then written into a
designated storage location. A decentralized
storage’s validation mechanism independently
verifies the proof before the computation is ac-
cepted and the tip is distributed. This en-
sures the integrity and reliability of results
within a tamper-resistant environment, estab-
lishing trust in the outputs without requiring
trust in the executor.

The execution environment for these tasks
is to be RISC-V compliant, leveraging the capa-
bilities and architecture pioneered by Risc Zero.
Their virtual machine serves as a robust foun-
dation, offering a verifiable execution environ-
ment tailored for general-purpose computation.
Unlike traditional smart contract VMs, which
are often narrowly scoped and optimized for de-
terministic blockchain operations, the adapted
machine in this model must support a broad
range of computational tasks beyond on-chain
logic.

To meet these demands, the virtual machine
must be extended and optimized to handle di-
verse computational workloads while preserv-
ing its core feature: generation of verifiable ex-

11

D
RA
FT

ecution proofs. Risc Zero’s work provides both
the architecture and tooling required to achieve
this, making it an ideal starting point for build-
ing a scalable and secure decentralized compu-
tation layer.

7.1 Computations

The decentralized computation model employs
a RISC-V-compliant execution environment [8],
extending principles pioneered by Risc Zero to
enable verifiable general-purpose computation.
Program code and input data reside in a decen-
tralized storage layer, functioning as a shared
memory space accessible to computation re-
source providers. These providers monitor a
dynamic task feed, where each task specifies
the program code, input parameters, and a
tip to incentivize execution. Upon selecting a
task, the provider executes the program against
the input data, leveraging Risc Zero’s virtual
machine (VM) to generate a succinct crypto-
graphic proof of correct execution.

The cryptographic proof, generated via
zero-knowledge succinct arguments (zk-
SNARKs), attests that the program was ex-
ecuted faithfully according to its defined logic.
This proof, alongside the computed result,
is committed to decentralized storage, where
validators independently verify its authentic-
ity. The verification process ensures computa-
tional integrity without relying on trust in the
provider, establishing a tamper-resistant frame-
work. Successful verification triggers the release
of the tip to the provider, aligning incentives
with honest participation while maintaining
auditability.

Risc Zero’s VM architecture is central to
this model, combining RISC-V instruction set
compatibility with specialized extensions for
proof generation. Unlike conventional smart
contract environments constrained by deter-
ministic execution and limited computational
scope, this VM supports arbitrary computa-
tions, including complex algorithms and data-
intensive workloads. The VM operates as
a verifiable runtime, isolating program execu-
tion while preserving cryptographic traceabil-

ity. This design enables the execution of off-
chain logic with on-chain verifiability, bridg-
ing decentralized and traditional computing
paradigms.

7.1.1 Cryptographic Proof Generation

Risc Zero employs a zk-STARK-like system [9]
internally adapted to generate zero-knowledge
proofs of computation [8]. At its core, this in-
volves generating a cryptographic claim that a
RISC-V program P was executed on input x
to produce output y, without revealing internal
state transitions and without the verifier having
to rerun the computation.

Formal Statement of the Proof The sys-
tem constructs a proof π for the following state-
ment:

π : I know a program P and an input x

such that y = P (x)
(1)

This is backed by a commitment to the ex-
ecution trace:

commit(P, x, y) → π (2)

Where:

• P is compiled into a sequence of RISC-V
instructions.

• x is the public or private input.

• y is the program output.

• π is the cryptographic proof that attests
to the correctness of the computation.

Execution Trace and Hashing The RISC-
V VM generates an execution trace T =
{s0, s1, ..., sn}, where each si is the state of the
VM at step i. The prover constructs a hash
chain or Merkle structure of these states:

H = MerkleRoot(s0 ∥ s1 ∥ ... ∥ sn) (3)

This Merkle root H is included in the proof
and commits to the full execution trace, ensur-
ing that any tampering with individual steps
can be detected.

12

D
RA
FT

Proof-of-Execution via Polynomial IOPs
The system models the execution trace as
a sequence of polynomials over a finite field
Fq. Let f1, f2, ..., fk ∈ Fq[x] represent polyno-
mial encodings of CPU state transitions. The
prover then constructs an interactive oracle
proof (IOP) to show that:

∀x ∈ D, (f1(x), ..., fk(x)) ∈ ValidStateTransitions
(4)

Where D is a low-degree domain. The ver-
ifier checks that all transitions obey the VM’s
operational semantics, without seeing the full
trace.

Fiat-Shamir and Non-Interactivity To
transform the interactive proof into a non-
interactive one (NIZK), Risc Zero uses the Fiat-
Shamir heuristic, replacing random challenges
with hash-derived values:

Challenge = Hash(P, x, y,H) (5)

This enables the construction of a compact
proof π that can be verified independently with-
out interaction.

Verification Equation The verifier then
checks that:

Verify(P, x, y, π) = true (6)

This verification can be done efficiently in
time O(log n) using the Merkle commitments
and polynomial evaluation checks, without re-
executing P .

7.2 Service Payments

To facilitate secure and autonomous payment
for off-chain computation, the system integrates
the cryptographic proof (as described above)
with the verification rules explicitly defined in
the task’s metadata. These two elements to-
gether form the condition for tip release. To
ensure that only the legitimate computation
provider can claim the reward, the provider’s
reward address must be submitted as the final
argument in the input data prior to execution.

This binding ensures cryptographic linkage be-
tween the computation and the identity of the
executor.

Upon completion, the computation result is
submitted to the network as an Arweave trans-
action containing a single action that claims
to fulfill the allocated space and release the
tip. This action includes the result, the crypto-
graphic proof of correct execution, and the re-
ward address. All of these elements are passed
to the verification mechanism, which validates
that the result matches the expected output,
the proof confirms correct execution according
to the specified program, and the reward ad-
dress matches the one originally embedded in
the input. Only upon successful verification of
all three components is the tip unlocked and
transferred to the rightful provider.

7.3 Delayed execution

The protocol natively supports delayed trans-
actions through programmable validation logic
embedded within computation tasks. Users can
encode a target block height directly into the
task’s program data, specifying that the result
may only be validated and finalized if the cur-
rent blockchain block exceeds this predefined
threshold. This mechanism enforces a manda-
tory waiting period between task submission
and execution, enabling use cases such as time-
locked computations or deferred contract set-
tlements. For example, a task programmed to
activate after 12 hours would embed a target
block number derived from the network’s aver-
age block time, ensuring execution cannot occur
until the requisite delay has elapsed.

When a computation resource provider exe-
cutes such a task, the program logic first verifies
that the blockchain’s current block height, ac-
cessible via a decentralized oracle or on-chain
state query, meets or exceeds the target. This
check is cryptographically bound to the compu-
tation’s execution trace, ensuring it is included
in the generated zero-knowledge proof. Valida-
tors subsequently re-verify this condition during
proof validation by cross-referencing the target
block against the blockchain’s finalized state. If

13

D
RA
FT

the block height is insufficient, the proof is re-
jected, and the associated transaction remains
in a pending state until the required blocks are
mined.

7.4 Recurrent calculations

The protocol’s recurrent computation frame-
work leverages TON’s native cross-chain mes-
saging system to enable autonomous, self-
sustaining computation workflows. When a
computation result and its corresponding proof
are submitted, they trigger a tip-carrying mes-
sage from the decentralized storage to a desig-
nated smart contract within the financial layer.
This message triggers a smart contract that ini-
tiates follow-up logic, such as scheduling the
next computation round.

In combination with delayed transaction
mechanics, this forms a Cron-like automation
system. For example, a smart contract could
schedule a task to execute every 12 hours by
setting a target block height derived from the
network’s block time. Each cycle’s proof sub-
mission generates a new message that resets the
delay, thus perpetuating the loop.

8 Decentralized Financial
layer

The decentralized web demands a new class
of financial infrastructure—one that goes far
beyond basic token transfers. A fully capa-
ble decentralized financial layer must support
high transaction throughput (TPS), a power-
ful virtual machine for expressive programma-
bility, scalable network sharding, application-
specific chain branching, and a messaging mech-
anism that enables both value transfers and
cross-layer action execution, particularly in co-
ordination with decentralized storage systems.
Among existing protocols, the TON protocol
already meets many of these criteria [5] and
has proven itself through real-world deployment
and performance.

However, to meet the specific needs of our
architecture, our financial layer will require

key modifications. This includes a redesigned
transaction schema supporting multi-operation
transactions and a migration to a RISC-V-
compatible virtual machine. Such changes will
ensure compatibility between on-chain smart
contracts and off-chain computational tasks,
enabling both to be written, verified, and ex-
ecuted within a unified SDK and programming
model.

8.1 Network sharding

The decentralized web demands a new class of
financial infrastructure - one that extends far
beyond simple token transfers. A fully capa-
ble decentralized financial layer must deliver
high transaction throughput (TPS), support a
general-purpose virtual machine, enable scal-
able network sharding, allow branching into
application-specific chains, and offer a robust
messaging mechanism capable of both value
transfer and action execution - particularly for
interacting with decentralized storage. Among
existing technologies, the TON protocol stands
out as a battle-tested solution already encom-
passing most of these critical features. Its ul-
timate strength lies in its native support for
network sharding, which enables the seamless
creation of application chains - dedicated sub-
nets designed to serve the unique requirements
of individual decentralized applications. TON
also provides a built-in, transparent cross-chain
data migration mechanism, allowing messages
and state to flow effortlessly between shards and
app-chains without introducing complexity to
the end user.

However, to meet the demands of our archi-
tecture, additional enhancements are necessary.
Our financial layer will extend the TON trans-
action schema to support multi-operation trans-
actions, enabling more expressive and atomic
logic within a single message.

8.1.1 dApps sharding economy

While the network’s sharding mechanism will
remain largely consistent with the original
protocol-where shard chains can be spun up at

14

D
RA
FT

minimal cost-we propose introducing a financial
incentive for launching dedicated dApp shard
chains through native coin staking. This ad-
dition is expected to enhance the overall toke-
nomics and provide clear economic benefits to
the associated shard chains.

8.2 Gasless transactions

A significant advancement in blockchain user
onboarding lies in the concept of gasless trans-
actions, a model where transactions can begin
with zero gas and acquire the required gas dur-
ing execution. This approach eliminates the
need for users to pre-fund their wallets with na-
tive tokens, thereby streamlining the first-time
user experience with decentralized applications
(dApps).

Traditionally, blockchain transactions must
be fully funded with gas upfront and are typi-
cally limited to a single atomic operation. This
conventional structure imposes constraints on
composability and presents a usability hurdle
for new users unfamiliar with token economics.
However, modern blockchain platforms such
as Solana introduce more flexible transaction
paradigms. These allow multiple operations
within a single transaction, increasing expres-
siveness and enabling sophisticated execution
flows that redefine the interaction between users
and decentralized systems.

Building upon this foundation, we propose
a multi-phase, self-funding transaction model.
In this model, a transaction is structured to:

• Start with zero gas.

• Execute an initial operation that swaps a
user-held token (e.g., USDC, DAI) for the
native blockchain token via an integrated
decentralized exchange (DEX).

• Invoke a novel virtual machine opcode to
convert the acquired native tokens into
usable gas.

• Continue with subsequent operations,
each checking that the available gas is suf-
ficient to proceed.

This mechanism ensures that execution re-
mains atomic and secure, while also enabling
the transaction to fund itself dynamically. As a
result, the transaction becomes capable of pay-
ing for its own execution using assets already
held within the initiating wallet, without re-
quiring any prior balance of the native token
or external intervention.

Self-Funding Transaction Flow

Smart Contract (DEX)

Token → Native Coin

Conversion

Native Coin → Gas

Special VM Opcode

Gas: 0

Operation 1: Send Tokens to DEX
User Tokens

Gas Returned

Gas: Positive✓

Operation 2

Operation 3

8.3 RISC-V virtual machine

To unify on-chain smart contracts and off-chain
verifiable computations, the virtual machine
powering our financial layer will be based on
the RISC-V architecture. This choice is strate-
gic and foundational: RISC-V offers a mod-
ern, open, and extensible instruction set that
aligns directly with the design of Risc Zero’s
zero-knowledge virtual machine, which our sys-
tem uses to generate cryptographic proofs of
off-chain computation. By standardizing on
RISC-V, we enable developers to write both
smart contracts and verifiable off-chain tasks
using the same tooling and development envi-
ronment. This dramatically simplifies the ex-
ecution model, allowing a single codebase and
SDK to target both domains, and fosters better
optimization, portability, and security.

The decision to adopt RISC-V also follows
a growing trend in blockchain architecture -
echoed by research and proposals in leading
ecosystems like Ethereum [10] - to move be-
yond legacy virtual machines such as the EVM.
These systems face inherent scalability and
provability bottlenecks. RISC-V, by contrast,
is not only more efficient and modular, but also
more amenable to zero-knowledge proof genera-
tion. Its regular, predictable instruction set sig-
nificantly reduces the complexity and cost of zk-

15

D
RA
FT

proof generation compared to traditional smart
contract bytecode, making it an ideal founda-
tion for future-proof decentralized infrastruc-
ture.

8.4 Smart contract language

To bootstrap the developer experience and align
with the performance demands of verifiable ex-
ecution, our smart contract development envi-
ronment will initially be based on Rust. Rust
offers a strong, modern systems programming
foundation with powerful type safety, memory
safety without garbage collection, and a ma-
ture ecosystem of libraries and tooling. With
an estimated developer base of over 3 million,
Rust has become a preferred language for build-
ing high-performance, secure systems, includ-
ing blockchain runtimes and cryptographic ap-
plications. Its compatibility with the RISC-V
architecture and existing support in the Risc
Zero virtual machine make it the ideal starting
point for building verifiable decentralized appli-
cations.

8.4.1 AssemblyScript

Looking forward, we plan to introduce sup-
port for AssemblyScript, a lightweight, com-
piled subset of TypeScript. AssemblyScript
combines a familiar JavaScript-like syntax with
strong typing, making it accessible to the mas-
sive ecosystem of web developers—who repre-
sent approximately 70% of all software devel-
opers globally. This addition will significantly
lower the barrier to entry for building decentral-
ized web services, enabling frontend and full-
stack developers to participate in decentralized
infrastructure development. AssemblyScript is
actively promoted and supported by major in-
dustry players such as Shopify, Fastly, and
Cloudflare, who value its balance of perfor-
mance, developer ergonomics, and compatibil-
ity with WebAssembly (WASM).

However, the primary challenge lies in
adapting AssemblyScript’s compilation pipeline
to target RISC-V instead of WASM. While
this is technically feasible, there are currently

no ready-made toolchains or compilers for this
transformation. Addressing this gap will be a
strategic priority for our development roadmap,
as it will unlock a vast pool of talent and bring
modern web development paradigms to the de-
centralized execution layer—bridging the gap
between Web2 andWeb3 through a unified, ver-
ifiable programming model.

9 Areas of Application

The protocol’s comprehensive integration of de-
centralized storage, computation, and finan-
cial layers enables the development of next-
generation decentralized applications across
multiple domains.

9.1 Web3 payments in Web2 web-
sites

The protocol lowers the onboarding barrier for
Web3 by eliminating the need for users to down-
load separate wallet software. This allows any
Web2 application to begin integrating Web3
payment flows with minimal friction. Users can
participate in the protocol’s economy directly
through participating Web2 services, using to-
kens earned or acquired from different sources
to pay for transactions across other Web2 or
Web3 applications.

9.2 Decentralized Gaming

Decentralized Gaming platforms can leverage
the computation layer for game logic and state
management while using decentralized storage
for game assets. The web browser gaming mar-
ket reached $20.1 billion in 2023 [11] and is pro-
jected to hit $49.2 billion by 2030, with these
numbers representing only web2 gaming esti-
mates The complete yearly gaming market is
estimated at $250 billion, taken into account
other platforms. Several DeFi gaming projects
have already demonstrated viral potential, with
some reaching millions of users, though network
congestion often degraded user experience and
hindered sustained growth.

16

D
RA
FT

Besides economical advantages, a web3
economy brings clear advantages to Massive
Multiplayer Online games (MMOs), Approxi-
mately 75% of gaming support tickets relate
to item trading issues, where users face fraud
on third-party platforms and subsequently sub-
mit complaints to game support teams. The
protocol’s integrated trading system eliminates
these risks by providing secure, transparent
item trading directly within the gaming ecosys-
tem.

The protocol enables new monetization
models for existing games through the intro-
duction of unique in-game items and curren-
cies. This represents one of the most prac-
tical applications of NFT technology, provid-
ing true ownership and verifiable scarcity while
maintaining familiar gaming experiences. Cru-
cially, end users remain abstracted from tradi-
tional blockchain complexities – they no longer
need to download specialized wallet software
or purchase native blockchain coins, processes
that currently exclude approximately 98% of
the web2 user base.

Furthermore, as gaming communities grow,
development teams can seamlessly migrate their
smart contracts and other L1 data to dedicated
sidechains when needed. This ensures user ex-
perience remains unaffected by network conges-
tion, while maintaining all benefits of decentral-
ized asset ownership and trading. The migra-
tion process remains transparent to users, pre-
serving their gaming experience while scaling to
meet demand.

Traditional web2 gaming faces significant
challenges that can now be addressed without
the complexities introduced by current web3 so-
lutions. The scalability features of our proto-
col, including dedicated sidechains, prevent the
network congestion issues that plagued previ-
ous successful blockchain games, ensuring sus-
tained quality of service even during periods of
viral growth.

This architecture enables truly ownable in-
game items, verifiable randomness for game me-
chanics, and transparent game economies while
maintaining the accessibility and user experi-
ence expected by mainstream gamers.

9.3 Decentralized Social Networks

Decentralized Social Networks can be built with
complete transparency of content distribution
algorithms and moderation policies. User data
remains under individual control while the net-
work’s operation becomes fully auditable. Con-
tent persistence is guaranteed through decen-
tralized storage, while the computational layer
enables sophisticated feed algorithms and con-
tent recommendation systems.

9.4 Pay-to-Stream Video Content
and Micropayments

The protocol enables continuous payment
streaming for video content, where access is
granted in real-time based on ongoing micro-
payments. Video segments are served from
storage providers with deterministic address-
ing, while the computation layer manages ac-
cess control and payment verification. Con-
tent providers receive payments continuously as
users stream, with automatic content access ter-
mination if payments stop. This enables new
monetization models where viewers can start
and stop paying at any point, paying only for
watched content.

9.5 Decentralized Messaging

The protocol enables truly decentralized mes-
saging through deterministic addressing and
private computations using encryption tech-
niques. Users control their inboxes through ad-
dress ownership, with messages stored in en-
crypted form in decentralized storage. The
computation layer handles message encryption
and routing, while spam protection operates
through multiple configurable mechanisms, in-
cluding optional pay-to-message requirements
where recipients can require payments for mes-
sage delivery. These anti-spam measures can be
combined and customized per user, similar to
modern SMTP filters but with economic incen-
tives. The system remains censorship-resistant
as message blocking occurs only through user-
defined rules rather than central authorities.

17

D
RA
FT

Address abstraction enables seamless integra-
tion with existing email clients through local
bridge software, maintaining familiar user ex-
periences while leveraging decentralized infras-
tructure.

9.6 Decentralized Advertising Net-
works

User-Centric Advertising Networks reverse the
traditional advertising model by compensating
users for their attention. Smart contracts au-
tomatically distribute payments for ad views,
while decentralized computation ensures accu-
rate tracking and fair distribution of advertising
revenue. This model introduces a revolution-
ary paradigm shift where web browsers, as cru-
cial infrastructure providers, can finally mone-
tize their services sustainably. Unlike the Web2
paradigm, where browsers struggle to find re-
liable revenue streams without compromising
user privacy, this system enables direct com-
pensation for browsers’ role in maintaining the
decentralized ecosystem. The transparent na-
ture of the system prevents fraud while protect-
ing user privacy, creating a fair economic model
that rewards all participants in the advertising
ecosystem.

9.7 Digital Art and Intellectual
Property Ownership

Current NFT implementations face a funda-
mental flaw: most store only links to digital as-
sets rather than the assets themselves, compro-
mising true decentralized ownership with ease
of substituting the original content. Our pro-
tocol solves this through native decentralized
storage, enabling direct ownership of large files
such as 3D models, technical documentation,
and patents. This allows for verifiable own-
ership of substantial digital assets - from en-
crypted technical patents to complex 3D models
- with guaranteed persistence and immutabil-
ity. The system’s deterministic addressing en-
sures that owned content remains permanently
accessible and unalterable, creating a robust
foundation for digital property rights beyond

simple tokens. These applications represent
early use cases, with the protocol’s flexibility
enabling new forms of decentralized services as
the ecosystem evolves.

10 Final words

The evolution of internet architecture has
reached a critical juncture where decentraliza-
tion is not just technically feasible but increas-
ingly desired. Our protocol represents a com-
prehensive solution to the challenges that have
historically limited the adoption of truly decen-
tralized applications. By integrating decentral-
ized storage, computation, and financial infras-
tructure into a cohesive framework, we provide
the foundation for a new generation of applica-
tions that maintain user sovereignty while en-
abling unprecedented functionality.

The protocol’s innovative approach to de-
centralized storage and computation, combined
with its flexible transaction model and system-
level DEX integration, creates an environment
where developers can build sophisticated appli-
cations without compromising on decentraliza-
tion principles. The ability to process trans-
actions in any token and seamlessly handle
complex computations through delayed trans-
actions removes significant barriers to main-
stream adoption.

Our architecture’s emphasis on scalability
through network sharding and dedicated ap-
plication chains ensures that the protocol can
grow to meet increasing demands while main-
taining performance and security. The integra-
tion of both system programs and smart con-
tracts provides the flexibility needed to support
diverse use cases, from core protocol functions
to general-purpose applications.

The potential applications across social net-
works, advertising, gaming, and digital art
demonstrate the protocol’s versatility and its
capacity to address real-world needs. By en-
abling true ownership of digital assets, trans-
parent operation of network services, and fair
compensation models for all participants, the
protocol lays the groundwork for a more equi-

18

D
RA
FT

table digital economy.
As we move forward, the success of this pro-

tocol will be measured not just by its technical
achievements, but by its ability to enable new
forms of human interaction and economic ac-
tivity in the digital sphere. The framework we

have advised provides the tools necessary for
developers and entrepreneurs to build the next
generation of decentralized applications, bring-
ing us closer to the original vision of a truly
decentralized internet.

19

D
RA
FT

References

[1] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: Decentralized Busi-
ness Review (2008), p. 21260.

[2] Vitalik Buterin et al. “Ethereum: A next-generation smart contract and decentralized appli-
cation platform”. In: White paper. Vol. 3. 37. 2014.

[3] Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction ledger”. In:
Ethereum project yellow paper 151.2014 (2014), pp. 1–32.

[4] Solana Foundation. Solana Documentation. 2022. url: https://docs.solana.com (visited
on 03/15/2025).

[5] Nikolai Durov. “Telegram Open Network”. In: White Paper. 2018.

[6] IDC. Global Digital Economy Forecast, 2023-2028. Tech. rep. International Data Corporation,
2023.

[7] Sam Williams and William Williams. “Arweave: A Protocol for Economically Sustainable
Information Permanence”. In: White Paper. 2019.

[8] Brian Fiege, Nick Braithwaite, and Jeremy Church. “RISC Zero: A Zero-Knowledge Virtual
Machine”. In: Technical Report. 2022.

[9] Eli Ben-Sasson et al. “Scalable, transparent, and post-quantum secure computational in-
tegrity”. In: IACR Cryptol. ePrint Arch. Vol. 2018. 2018, p. 46.

[10] Wonji Kim et al. “Ethereum RISC-V: Implementing the Ethereum Virtual Machine with a
RISC-V Backend”. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer. 2022, pp. 283–303.

[11] Newzoo. Global Games Market Report. Tech. rep. Newzoo, 2023.

20

